UNIVERSITÉ LIBRE DE TUNIS

Département : Génie Civil

Projet métré

Avant métré projet 3

- ♣ Realisé par :
- ✓ Korbosli Nassim
- ✓ Koussay Assoul

Classe: GA

Groupe: 1

L'année universitaire : 2020 / 2021

I. Introduction:

Vue l'importance de l'avant métré qui est une base de fixation du montant d'un projet, ainsi que l'utilisation des résultats de l'avant métré pour l'établissement des plannings qui sont des programmes de réalisations.

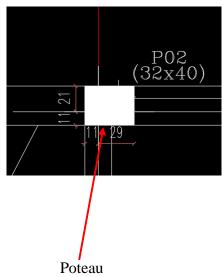
Des erreurs peuvent avoir une influence prépondérante sur le bon déroulement des travaux ; elles peuvent entraîner dans les cas extrêmes leur non achèvement par manque de crédits nécessaires (prévisions insuffisantes).

Pour limiter les erreurs qui peuvent être commises par tout homme d'art, il faut recourir à une forme méthodique, en présentant les différents éléments selon un ordre logique qui facilite la vérification, le contrôle et la codification de l'avant-métré.

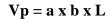
II. Ordre de l'avant-métré :

					Dimension	n		
Désignation	Index	U	Détail	a	b	h ou L	Nombre	Quantité
Lots 1 : Fouille	F	m3						
Lots 2 : béton armé fondation	BAF	m3						
Lots 3 : béton de propreté	BP	m3						
Lots 4 : Gros béton	GB	m3						
Lots 5 : chape 13 cm	СН	m2						
Lots 6 : béton armé élévation	BAE	m3						
Lots 7 : planchers	PL	m2						

III. Calcul de l'avant métré détaillé :

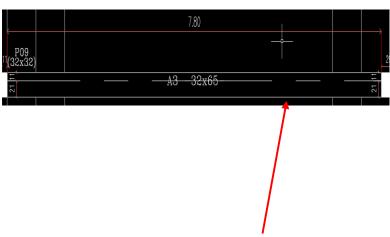

1- exemples de calcul de chaque article :

- Béton armé en élévation (BAE)
- **❖** Poteaux :


$$Vp = a x b x h$$

Exemple:

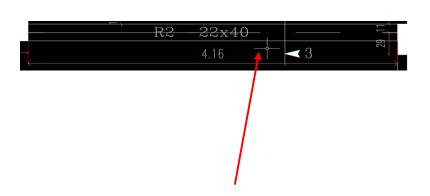
 $Vp = 0.32x \ 0.4 \ x \ 3.5 = 0.448m^3$



Poutres:

Exemple:

 $Vp = 0.32x \ 0.65 \ x \ 7.8 = 1.622m^3$


Poutre

Raidaisseurs:

 $Vr = a \times b \times L$

Exemple:

 $Vr = 0.22x \ 0.4 \ x \ 4.16 = 0.366m^3$

• Béton armé en fondation (BAF)


	Гаих					NDATIO	NS – profondeur		
Designation	GROS BETON			SEMELLES					
	Coffrage			Coffrage			Ferraillage		
	A	В	Hmin	а	b	h	Aciers inf.	Aciers sup	
S1	130	130	70	80	80	30	#7HA12	#7HA10	
SZ	160	160	70	90	90	30	#9HA12	#9HA10	
S3	170	170	70	100	100	30	#10HA12	#10HA10	
S4	190	190	70	110	110	30	#10HA14	#10HA10	
S5	220	220	70	130	130	30	#11HA16	#11HA10	
S6	230	230	70	140	140	35	#12HA16	#12HA10	

Semelles:

Volume semelle =a x b x h

Exemple:

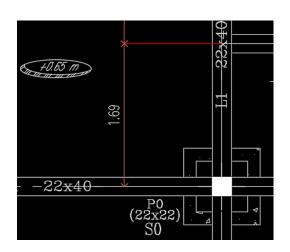
 $VS0= 0.6 \times 0.6 \times 0.3 = 0.108 \text{ m}^3$

NB : On remarque qu'on a manqué des informations pour la semelle S0 dans le tableau des fondations. Pour cette raison on supposé que : _____

a=60cm; b=60cm; h=30cm

Longrines:

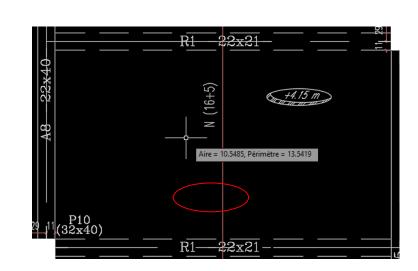
Volume de longrines = $a \times b \times L$


Exemple:

 $VL = 0.22 \times 0.4 \times 2.53 = 0.223 \text{ m}^3$

❖ Pré-Poteau :

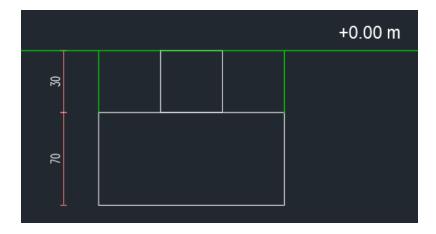
Exemple:


 $Vpp = 0.22 \times 0.22 \times 0.65 = 0.0315 \text{ m}^3$

• Planchers

 $Vp = aire \times 1$

Exemple:

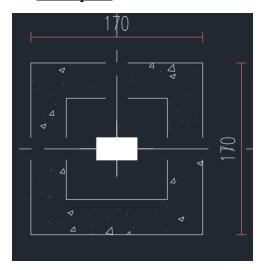


Les étapes :

Commande aire sur Auto-CAD →on sélectionne les 4 extrémités →Entrer

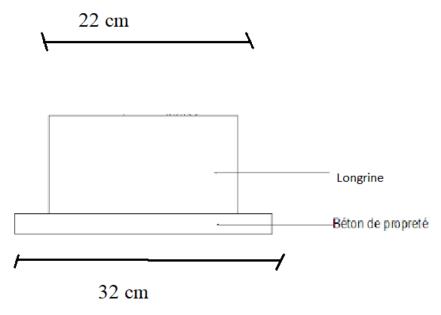
• FOUILLE

Fouille en puits :



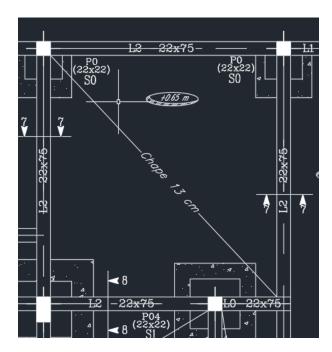
Exemple:

Fp1= 1.3*1.3*1 = 1.690 m³


• Gros béton

Exemple:

GB3=1.70*1.70*0.70=2.023 m³


• <u>Béton de propreté</u>:

Exemple:

BP0 Sous longrine $L0(22*75) = 0.32*0.05*4.76 = 44.863 \text{ m}^3$

• **Chape 13 cm :**

Exemple:

Ch = 3.63*3.88 = 14.08 m

III. Conclusion:

Le but de métré bâtiment est l'évaluation du coût des ouvrages en partant de leur mesurage. Le métré bâtiment se fait avant, pendant et après la réalisation de ces ouvrages.

Le métré bâtiment constitue une comptabilité particulière de la construction à la fois des quantités et du coût des ouvrages composants cette construction.

Le métré bâtiment sert à :

- a. L'estimation préalable des travaux.
- b. La conduite de l'exécution des travaux.
- c. La facturation des travaux.

Etude avant métré projet 3