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                Flexion simple 
 

 
1. DEFINITION - GENERALITES  

Un élément est soumis à la flexion simple si les sollicitations se réduisent à un 

moment fléchissant zM  et un effort tranchant yV . Si l’effort normal 0xN ≠ , alors on 

parle de flexion composée. 

En béton armé on distingue l’action du moment fléchissant qui conduit au 

dimensionnement des aciers longitudinaux de l’action de l’effort tranchant qui 

concerne le dimensionnement des aciers transversaux (cadres, épingles ou étriers). 

Ces deux calculs sont menés séparément, et dans ce chapitre on se limitera aux 

calculs relatifs au moment fléchissant. 

Une poutre soumise à la flexion simple s’incurve ; la partie inférieure de la poutre 

s’allonge et sa partie supérieure se raccourcit. La partie inférieure est donc soumise 

à une traction et la partie supérieure est soumise à une compression.  

En pratique, plus précisément dans le cas des bâtiments courants, on peut citer 

quelques éléments de la structure qui travaillent en flexion simple comme : 

  - Les planchers (poutres, poutrelles, dalles pleines) ; 

  - Les balcons en console ; 

  - Les escaliers. 

 
 

 
Poutre soumise à la flexion simple 

 

M
F q₁

q₂
q₃

 

V 
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2.1. Prédimensionnement de la section de la poutre 
 

Au stade du prédimensionnement, on peut choisir les dimensions de la section de 
la poutre [largeur (b) × hauteur (h)] comme suit : 

Hauteur h  
15 10
l lh≤ ≤  Avec l : longueur de la poutre 

mesurée entre appuis 
   

Largeur b 
5 2
h hb≤ ≤  Avec b ≥15 cm Pour des 

raisons de bétonnage correct 

  
 

 
2. CALCUL DES SECTIONS RECTANGULAIRES A L’ELU EN FLEXION SIMPLE 
 

On s’intéresse dans ce qui suit au calcul des poutres à sections rectangulaires, 

sans acier comprimé sollicitées en flexion simple à l’ELU, plus précisément à 

l’ELUR (état limite ultime de résistance des matériaux). 

 
2.1. Hypothèses de calcul 

• Les sections droites planes restent planes après déformations ; 

• Il n’y a pas de glissement entre l’acier et le béton ; 

• La résistance à la traction du béton est négligée ; 

• La contrainte ultime de l’acier est e
s su

s

ffσ
γ

= =  et la résistance ultime du béton 

est 
0,85 cj

bc bu
b

f
fσ

θγ
= =  

• Le module d’élasticité de l’acier est : Es = 200000 MPa ; 

• La section des aciers est concentrée en son centre de gravité ; 

• La section des aciers n’est pas déduite de celle du béton. 
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2.2. Notations 
Pour les calculs aux ELU, on utilise les notations suivantes : 

• b et h sont la largeur et la hauteur de la section de béton ; 

• As est la section d’acier, dont le centre de gravité est positionné à d de la fibre 

la plus comprimée de la section de béton ; 

• y est la position de l’axe neutre par rapport à la fibre la plus comprimée de 

la section de béton ; 

• sσ  est la valeur de la contrainte ultime de calcul des aciers, limitée à suf  ; 

• bcσ  est la résistance ultime de calcul du béton, limité à buf  ; 

• bcε  représente la déformation du béton ; 

•  sε  représente la déformation des aciers ;  

 
2.3. Déformations limites ultimes des matériaux acier-béton 

L’état limite ultime peut être atteint soit : 

• Par écrasement du béton en considérant une déformation du béton 
3,5bcε = ‰  (fig.1). 

• Par écoulement plastique des aciers en considérant une déformation de 
l’acier 10sε = ‰  (fig.2). 

 
fig.1 : Diagramme de calcul du béton à l’ELU 
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fig.2 : Diagramme de calcul de l’acier à l’ELU 
 
 
2.3.1. Droites de déformation - Pivots 

Pour les calculs à l’ELU, on suppose qu’un point de la droite de déformation dans 

la section est fixé. Ce point s’appelle le pivot (fig.3), et il correspond soit : 

• À la déformation limite (maximale) de traction dans les aciers 10sε = ‰ , c’est 

le Pivot A ; 

• À la déformation limite (maximale) en compression du béton 3,5bcε = ‰ , c’est 

le Pivot B ;  

• À une déformation en compression uniquement du béton ( )2 3,5bcε≤ ≤‰ ‰  , 

c’est le Pivot C. 

 

Remarque :  

Pour un calcul en flexion simple, on aura une section qui sera en pivot A ou en 

pivot B.  

Le bon fonctionnement de la section de béton armé se situe aux alentours de la 

droite AB, car les deux matériaux acier et béton travaillent au mieux. 
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fig.3 : Définition des différentes droites de déformation en flexion simple à l’ELU. 
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Pivot A – domaine (1) 
 
Déformations Modes de sollicitations et type d’éléments concernés 

10
0 3,5

s

bc

ε
ε
=

 ≤ ≤

‰   ‰  

Traction simple (tirant)
Section entièrement tendue en flexion composée (tirant)   
Section partiellement comprimée en flexion simple ou  composée (poutre ou tirant)







 

L’ELUR est atteint par les armatures. 

 
fig.3 (a) : Pivot A 
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Pivot B – domaine (2) 
Déformations Modes de sollicitations et type d’éléments concernés 

3,5
10

bc

s

ε
ε

=
 ≤

‰  ‰  

L’ELUR est atteint par le béton en flexion est la section est 

partiellement comprimé en flexion simple ou en flexion 

composée. 

 
fig.3 (b) : Pivot B 
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Pivot C – domaine (3) 
La déformation du béton est telle que : εbc ≤ 2 ‰ sur la fibre la moins comprimée et 2 ‰ ≤ εbc ≤ 3,5 ‰ sur la fibre la 

plus comprimée (fig.3c). 

L'ELUR est atteint par compression du béton et la section est entièrement comprimée. 

C’est le cas de la compression simple ou de la flexion composée avec section entièrement comprimée. 

 
fig.3 (c) : Pivot C 
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2.4. Etude des cas limites  

On se propose dans ce qui suit de déterminer la position de l’axe neutre (y) en 

fonction des différentes déformations limites ultimes de l’acier et du béton.   

  
2.4.1. Etat limite ultime aux pivots A et B 

On considère dans ce cas que le béton atteint sa déformation ultime de 3,5 ‰ et 

que l’acier atteint sa déformation ultime de 10 ‰ et on s’intéresse à la position de 

l’axe neutre (y) donnée à partir de la fibre la plus comprimée du béton (fig.4). 

 
fig.4 : Etat limites aux pivots A et B 

 
En considérant les triangles semblables du diagramme des déformations on 
obtient : 

bc s bc bc

s bc

y d
y d
ε ε ε ε

ε ε
+

= ⇒ =
+

  

3,5
3,5 10

y d=
+

  

   
Soit y = 0,259 d    en posant  α  = 0,259    on aura     y = α d 
 
On en déduit donc la position de l’axe neutre y = 0,259 d (soit α  = 0,259). 

Les déformations de l’acier et du béton sont à leurs limites ultimes (pivots A ou B). 

Dans ce cas, le travail des matériaux acier-béton est optimisé. 
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2.4.2. Etat limite ultime au pivot B avec une déformation εs à la limite 
élastique ( εs= εl ) 

On considère dans ce cas que le béton atteint sa déformation ultime de 3,5 ‰ et 

que l’acier travaille à sa limite élastique lε . Le diagramme contrainte déformation 

de l’acier (fig.2) montre que la déformation élastique limite lε  est atteinte pour une 

contrainte e
s su

s

ffσ
γ

= =   

On peut écrire : s s lEσ ε=  avec sE = 200000 MPa (module d’élasticité de l’acier). 

Nuance d’acier FeE400 FeE500 

e

s s
l

s s

f

E E
σ γε = =  lε  = 1,74 ‰ lε = 2,17 ‰ 

 
La position de l’axe neutre (fig.5) est donnée par :  
 

3,5 0.668
3,5 1,74

y d d= =
+

  

 
         Avec Lα = 0,668    (pour des aciers de  nuance FeE400)  

 

 et     3,5 0.617
3,5 2,17

y d d= =
+

 

 
                  Avec Lα = 0,617   (pour des aciers de  nuance FeE500) 

                                         

 

fig.5 : Diagramme des déformations au pivot B avec s lε ε=   
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La connaissance de la valeur de α  pour une déformation lε  est très importante car 

au-delà de cette valeur (α >0,617 ou α >0,668) l’acier n’atteint même pas sa limite 

élastique, travaille insuffisamment tout en ayant une grande section.   

 
2.4.3. Etat limite ultime au pivot A avec une déformation du béton de 2 ‰ 

Une autre valeur de α  est aussi importante, celle correspondant à une déformation 

de l’acier de 10 ‰ et une déformation du béton de 2 ‰ (fig.6).  

 

fig.6 : Diagramme des déformations au pivot A avec 2bcε = ‰   

 

Un calcul similaire au précédent nous donne :  

 
2 0,167

2 10
y d d= =

+
      soit      α  = 0,167 

 
Une valeur α  en dessous de 0,167 (α  < 0,167) le béton travaille mal et la section 
de béton est considérée comme surdimensionnée. 
 
2.4.4. Conclusion 

La valeur de α  une fois calculée, comparée aux valeurs limites établies 

précédemment, nous renseigne sur les modes de déformations de l’acier et du béton 

et nous permet ainsi d’optimiser leurs sections. Les résultats obtenus en fonction 

de α et µ sont résumés comme suit (fig.7) : 
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      fig.7 : Valeurs de α  et mode d’état limite 

 

Nuance acier FeE400 FeE500 

lα  0,668 0,617 

lµ  0,392 0,372 
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2.5. Calcul des sections rectangulaires à l’ELU (méthode simplifiée) 

Soit une section rectangulaire de largeur b et de hauteur h, sollicitée par un 

moment de flexion uM  (fig.8). 

 

fig.8 : Déformations, contraintes et sollicitations internes 
 
fbu : contrainte ultime en compression du béton        (fbu = 0,85 fcj /θγb) ; 

σs = fsu : contrainte ultime des aciers en traction       (σs = fsu = fe /γs) ;  

Nbc : résultante des contraintes du béton comprimé ; 

Ns : résultante des contraintes des aciers tendus ; 

Z : bras de levier. 

Les résultantes des contraintes au niveau des aciers (Ns) et du béton comprimé 

(Nbc) sont données par les figures 8 et 9 : 

                    Ns = As σs = As fe/γs 

              Nbc = 0,8 y b fbu = 0,8 α  d b fbu    

 
fig.9 : Répartition des contraintes 
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Le bras de levier Z est donné par   Z = d – 0,4 y = d – 0,4α d 
Soit      Z = (1 – 0,4α ) d 
En écrivant les équations d’équilibre des moments on obtient : 
 Nbc Z = Mu        ….….…(1) 
 Ns Z = Mu         ………. (2) 
L’équation (1) nous donne :  
0,8 α  d b fbu (1 – 0,4 α ) d = Mu      
0,8 α  (1 – 0,4 α ) = Mu /b d2fbu 
On aura 0,8 α  (1 – 0,4 α ) = μ      avec  μ = Mu /b d2fbu   (Moment réduit) 
                                                  
   - 0,32 α 2 + 0,8 α   = μ 
     0,32 α 2 – 0,8 α  + μ = 0 
  Soit                                0,4 α 2 –  α  + (μ/0,8) = 0 
 
Equation du second degré d’inconnue α . 
 Δ = 1 – 4 (0,4) μ /0,8 
 Δ = 1 – 2 μ 
D’où                                          ( ) 8,0/211 µα −−=  

 ( )µα 21125,1 −−=       et    ( )0,8 1 0,4µ α α= −    

  
Une fois α  calculée, en utilisant la figure 5 on peut déterminer dans quel mode 

d’état limite travaille notre section et optimiser ainsi les sections de l’acier et du 

béton. D’autre part, l‘équation (2) devient :  

( )1 0,4 u
s s u s

s

MA d M A
Z

σ α
σ

− = ⇒ =  

Pour α  = 0,259 soit µ = 0,186 l’acier et le béton sont à leurs limites ultimes (pivots 

B ou A), on considère donc que pour toute valeur de α  > 0,259  soit µ > 0,186, 

l’acier et le béton sont bien utilisés mais cette valeur ne doit pas dépasser celle de 

α  limite qui correspond à α L =0,668 soit µL = 0,392 pour les FeE400 ou                    

α L =0,617  soit  µL = 0,372 pour les FeE500 (voir fig.7), car dans ce cas le béton 

est trop sollicité et l’acier est sous exploité ce qui entraine une grande quantité 

d’aciers tendus pour une quantité relativement réduite d’aciers comprimés.  

On préfère donc, dans la suite de ce cours, de redimensionner la section de béton 

en augmentant par exemple sa hauteur, au lieu de faire un dimensionnement avec 

aciers comprimés.  
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Tableau 1 : Valeurs caractéristiques de α  et µ 

α  0,167 0,259 0,617 0,668 1 

µ 0,125 0,186 0,372 0,392 0,48 Aciers FeE500 Aciers FeE400 
                                                   
2.6. Organigrammes pour le calcul des poutres à section rectangulaire en 
flexion simple à l’ELU 
2.6.1. Vérification des dimensions et calcul de la section d’acier 

On se propose de vérifier les dimensions et de calculer les aciers d’une section 

rectangulaire en flexion simple à l’ELU. 

Données : b ; h ; d (géométrie de la section de béton) , 

28  ;  ;  ; c e b sf f γ γ  (Caractéristiques des matériaux et Mu le moment ultime) 
 

28
2

0,85       et      c u
bu

b bu

f Mf
bd f

µ
φγ

= =  

Dans le cas courant d = 0,9h 

bγ  =1,5 dans le cas courant et  

bγ  = 1,15 dans le cas accidentel 
 

( )1,25 1 1 2uα = − −  

Pour optimiser l’utilisation des aciers on doit avoir α< αL (αL = 0,668 soit µL = 0,392 

pour les FeE400 et αL = 0,617 soit µL = 0,372 pour les FeE500).  

Dans le cas contraire redimensionner la section en augmentant sa hauteur. 

 α                   0,167               0,259      αL     1 
  µ                     0,125                             0,186                            µL                                   0,48 
  
 

  
 

 

 

( )1 0,4Z dα= −  

 

u
s

s

MA
Zσ

=
 

min

0, 23
        et         tje

s s s
s e

bdff A A
f

σ
γ

= > =  

sγ  = 1,15 dans le cas courant, sγ  = 1 dans le cas accidentel 

 

Pivot A 
L’acier est bien sollicité mais le 
béton est moins bien sollicité  

Pivot B 
L’acier et le béton sont 
bien sollicités 

Pivot B 
Le béton est trop 
sollicité et l’acier est 
sous exploité (aciers 
comprimés nécessaires) 

 
 
                       Le domaine le plus économique   
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2.6.2. Moment résistant d’une poutre en flexion simple à l’ELU 
Connaissant la géométrie de la poutre et la section d’acier (As), on calcule le 

moment résistant de cette section. 

( )280,85         =                    Z= 1 0,4
0,8

c s s
bu l rbu s s

b bu

f Af M ZA d
bdf
σα α σ α

θγ
= < = −   

Le moment résistant rbuM doit être supérieur au moment ultime ( )rbu uM M> . Dans 

le cas contraire un redimensionnement est nécessaire.  

3. VERIFICATION DES SECTIONS RECTANGULAIRES A L’ELS EN FLEXION 
SIMPLE 

On s’intéresse dans ce qui suit à la vérification des poutres à sections 

rectangulaires, sollicitées en flexion simple à l’ELS, plus précisément à l’état limite 

de service vis-à-vis de la durabilité.  

3.1. Hypothèses de calcul et Notation  
• Les sections droites planes restent planes après déformations ; 

• On considère qu’il n’y a pas de glissement entre l’acier et le béton ; 

• La résistance à la traction du béton est négligée ; 

• Le béton et l’acier sont considérés comme des matériaux linéairement 

élastiques : c'est-à-dire que les contraintes sont proportionnelles aux 

déformations : 

  
bc bc b bc

s s s s

f E
f E

σ ε
σ ε

= =
= =   

bc bcfσ = : contrainte de service du béton ; 

s sfσ = : contrainte de service de l’acier ; 

bE  : module de déformation instantanée du béton ( 1/311000ij cjE f= ) ;      

sE  : module de déformation instantanée de l’acier ( sE  = 200000 MPa) ; 

sε , bcε  : déformations unitaires élastiques de l’acier et du béton ; 

• Par convention on prend 15s

b

En
E

= =  (une section d’acier A est représentée par 

une section de béton égale à n.A) 

    

www.cours-genie-civil.com



Chapitre V : Flexion simple 
 

17 

 
Fig.10 : Notations utilisées pour les calculs en flexion simple à l’ELS 

 
3.2. Etat limite de service vis-à-vis de la durabilité  

On se propose de déterminer les contraintes en service et faire une vérification vis 

à vis de la limite de compression du béton et de la limite d’ouverture des fissures. 

Le dimensionnement à l’ELU et la vérification des contraintes à l’ELS peut 

être établie lorsque la fissuration est peu préjudiciable ou préjudiciable dans 

le cas d’une fissuration très préjudiciable il faut faire le calcul à l’ELS.   

3.2.1. Calcul des contraintes 

Connaissant les caractéristiques géométriques de la section de béton (b, h, d), la 

section des aciers tendus As et le moment de flexion à l’état limite de service Mser 

(fig.11), on calcule les contraintes de l’acier et du béton. 

 
fig.11 : Caractéristiques géométriques de la section 

 
y : Distance du centre de gravité de la section homogène à la fibre la plus 

comprimée 
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• Position de l’axe neutre (y) 

On calcule le moment statique par rapport à l’axe neutre (le béton tendu est 

négligé) : 

2
y  : position du centre de gravité du béton comprimé 

b y×  : section du béton comprimé 

n  : coefficient d’équivalence ( 15n = ) 

     ( ) 20     soit   by 30 30 0
2 s s s
yby nA d y A y A d  − − = + − = 

 
    (3) 

y, est la solution de l’équation du second degré  (3). 

• Le moment d’inertie I 

Le moment d’inertie (I) calculé par rapport à l’axe neutre est donné par : 
 

( ) ( )
23

2 23115 15
12 2 3s s
by yI by A d y I by A d y
  = + + − ⇒ = + −  

   
  

Pour une répartition linéaire des contraintes (fig.12) on aura : 

( )

( )

   et   =    on pose    

on obtient      et   

ser s ser ser
bc

bc s

M M My d y K
I n I I

Ky nK d y

σσ

σ σ

   = − =   
   

= = −
  

 

fig.12 : Répartition des contraintes 
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3.2.2. Vérification des contraintes 

Les contraintes de service doivent rester inférieures aux limites suivantes en 

fonction du type de fissuration : 

0,6bc bc cjfσ σ≤ =  

s sσ σ≤                                     

• Fissuration peu préjudiciable : aucune limite pour sσ  ;   

• Fissuration préjudiciable : max  ;  110
2

e
s tj

f fσ η =  
 

 pour les HA ; 

• Fissuration très préjudiciable : 0,8max  ;  110
2

e
s tj

f fσ η =  
 

pour les HA ; 

η coefficient de fissuration tel que : η = 1,6 pour les barres à haute adhérence sauf 
pour les aciers de diamètre inférieur à 6 mm où on prend η = 1,3.   
ftj résistance à la traction du béton à j jours : ftj = 0,6 + 0,06 fcj. 
 

3.2.3. Organigrammes pour la vérification des poutres à section rectangulaire 
en flexion simple à l’ELS 

On se propose de vérifier les sections d’acier et du béton à l’ELS d’une section 
rectangulaire sollicitée en flexion simple. 
 

Données : b ; h ; d (géométrie de la section de béton), 
La section d’acier As et le moment à l’ELS Mser. 

 

On calcule la position de l’axe neutre y, 
solution de l’équation 
2by 30 30 0s sA y A d+ − =  

 
On calcule le moment d’inertie 

( )231 15
3 sI by A d y= + −  

 

On calcule les contraintes : 

( )
   bc

s

Ky
nK d y

σ
σ

=

= −  Avec :    serMK
I

=  

 

On doit vérifier que : 

0,6bc bc cjfσ σ≤ =  

s sσ σ≤  
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 3.2.4. Dimensionnement à l’ELS 

Lorsque la fissuration est très préjudiciable et dans certains cas préjudiciable la 

combinaison dimensionnante en flexion simple est celle de l’ELS. On procède 

directement au calcul à l’ELS car dans ce cas la section d’acier nécessaire à l’ELS 

est toujours plus grande que celle nécessaire à l’ELU. 
 

 
 

Equations d’équilibre 

Somme des forces Somme des moments 

1 0 
2 bc s sby Aσ σ− =  ( )2

3
1
3
1
2 3

A ser s s

B ser bc s s

C ser bc

yM M A d

M M by A d y

yM M by d

σ

σ σ

σ

 ⇒ = − 
 

⇒ = + −

 ⇒ = − 
 

∑

∑

∑

 

  

Equations de compatibilité des déformations 

( )

bc s

bc s bc

bc s

y d y
ndy

y n d y n

ε ε

σ σ σ
σ σ

=
−

= ⇒ =
− + +

  

 

En prenant :   ,     et   bc bc s s y dσ σ σ σ α= = =   
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Le moment  1
1

1
2 3bc

yM by dσ  = − 
 

 est le moment au-delà duquel la section nécessite 

des aciers comprimés pour 1
bc

bc s

ndy
n

σ
σ σ

=
+ +

 

En combinant les équations d’équilibre et les équations de compatibilité avec             

( y dα=  ) on obtient : 

3 2
2 2

6 63 0ser ser
s s

nM nM
bd bd

σ α σ α α − − + = 
 

     ;      On pose 2
ser

ser
s

nM
bd

µ
σ

=   

On aura :  ( )3 23 6 1 0serα α µ α− − − =   

La solution ( )  0 1α α< < de cette équation nous permet de calculer la section d’acier 

1
3

ser
s

s

MA
d ασ

=
 − 
 

 (équation des moments en A)  

Une fois la section calculée, la vérification des contraintes se fait suivant 

l’organigramme de vérification des contraintes à l’ELS (3.2.3). 

3.2.5. Organigrammes pour le dimensionnement des poutres à section 
rectangulaire en flexion simple à l’ELS 

Dimensionnement d’une section rectangulaire à l’ELS sollicitée en flexion simple. 

Données : Mser , b , h , fe , fc28 
 

On calcule  1
1

1
2 3bc

yM by dσ  = − 
 

   avec  1
bc

bc s

ndy
n

σ
σ σ

=
+ +

 

 

Si :  Mser  > M1  
Redimensionner la section de béton (augmenter b et/ou h) ou placer des aciers 

comprimés (mauvais choix) 
 

Si : Mser < M1  les aciers comprimés ne sont pas nécessaires. 
 

On calcule :   2
ser

ser
s

nM
bd

µ
σ

=  

On détermine ( )  0 1α α< <  solution de l’équation : ( )3 23 6 1 0serα α µ α− − − =  
 

La section d’acier est donnée par :  
1

3

ser
s

s

MA
d ασ

=
 − 
 

 

La vérification des contraintes est donnée par (3.2.3)  
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Dimensionnement des sections d’aciers à l'ELS (Flexion simple) 

On calcule µser on lit la valeur de α correspondante puis on calcule  

1
3

ser
s

s

MA
d ασ

=
 − 
 

 

2
ser

ser
s

nM
bd

µ
σ

=  
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4. PRINCIPE ET FONCTIONNEMENT DES SECTIONS EN T 

Les dalles supportées par des poutres contribuent souvent au travail de celles-ci 

en reprenant une partie des contraintes de compressions générées par la flexion de 

cette poutre (fig.13).  

Dans ce cas, Il est important de considérer la section sollicitée comme une section 

en T et non pas comme une section rectangulaire.  

Notons que ceci n’est vrai que dans le cas où la poutre est soumise à un moment 

positif ; si le moment est négatif, la dalle ne participe pas au travail de la poutre et 

la section sollicitée est considérée comme rectangulaire. 

Par simplification, on considère une répartition uniforme des contraintes sur la 

largeur de la table à utiliser. Cette largeur est appelée largeur efficace (fig.14) . 

 

 

 
 

fig.13 : Efforts normaux selon (x) dans la dalle. 
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fig.14 : Dimensions des débords à prendre en compte pour le calcul d’une poutre en T. 
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4.1. Calcul des sections en T 

Pour calculer les sections en T, il est nécessaire de savoir si l’axe neutre est dans 

la table de compression ou dans la nervure car le calcul s’effectue différemment 

selon chaque cas.  

• 1er cas : L’axe neutre est dans la table de compression.  

On a donc ( )1y h< , le béton tendu étant néglige, la poutre en T se calcule 

exactement comme une poutre rectangulaire de largeur b, à l’ELU ou à l’ELS. 

• 2éme cas : L’axe neutre est sous la table de compression.  

On a donc ( )1y h> , une partie de la contrainte normale est reprise par la table 

de compression de largeur b  , l’autre par une partie de l’âme (nervure) de 

largeur 0b  et de hauteur ( )10,8y h−  à l’ELU et ( )1 1y h−  à l’ELS. 

 

En effet, dans la majeure partie des cas, une poutre en T se calcule comme une 

poutre rectangulaire de largeur b  et si ( )1y h<  n’est pas vérifiée, il faut refaire le 

calcul avec les hypothèses d’une poutre en T. 

Pour cela on calculera le moment résistant de la table (à l’ELU et à l’ELS) défini 

comme le moment que peut reprendre la table si elle est entièrement comprimée 

(l’axe neutre est situé au raccord entre la nervure et la table de compression). 

Les moments résistants tM   à l’ELU et à l’ELS sont donnés comme suit :  

1
1

1 1

       à l'ELU
2

      
   à l'ELS

2 3

tu bu

tser bc

hM bh f d

h hM b dσ

  = −   


  = −   

 

4.1.1. Calcul des sections en T à l’ELU 

A l’ELU le moment résistant de la table de compression est : 1
1  

2tu bu
hM bh f d = − 

 
 

Soit uM  le moment à l’ELU, on distingue alors deux cas : 

• u tuM M≤  : l’axe neutre est dans la table de compression, la section se calcule 

comme une section rectangulaire de largeur b et de hauteur utile d sollicitée 

par le moment ultime Mu. 
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• u tuM M> : l’axe neutre est dans la nervure, la section se calcule comme une 

section en T.  

Dans ce cas on considère que les débords de la table de compression reprennent 

une partie du moment à l’ELU noté uTableM et le reste uAme u uTableM M M= −  est repris 

par l’âme. 

 

On se ramène donc au calcul de deux sections rectangulaires, l’une de largeur 

( )0b b−  et l’autre de largeur 0b  (fig.15). 

 
fig.15 : Principe du calcul de la section d’acier pour une poutre en T à l’ELU 

 

Les étapes du calcul sont les suivantes : 

 

1) Calcul de la part de moment repris par les débords de la table :

( ) 1
0 1 2uTable bu

hM b b h f d = − − 
    

2) Calcul de la part de moment que doit reprendre l’âme : 

uAme u uTableM M M= −   

3) Calcul classique de la section d’acier ( )sAmeA à prévoir pour reprendre uAmeM

(calcul du moment réduit μ, de α, Z et sσ  puis ( )sAmeA  en évitant de mettre 

des aciers comprimés) : 

( )1 0,4
u uTable

sAme
s

M MA
dα σ

−
=

−    
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4) Calcul de la section d’acier nécessaire ( )sTableA pour reprendre le moment 

uTableM  de la table : 

 1

2

uTable
sTable

s

MA
hdσ

=
 − 
 

  

5) Calcul de la section d’acier nécessaire à mettre en place :

s sAme sTableA A A= +   

 

4.1.2. Calcul des sections en T à l’ELS 

Les calculs à l’ELU sont conduits en décomposant la résultante des contraintes de 

compression du béton en deux résultantes fictives 1bcN  et 2bcN  (fig.16). 

• 1bcN  est la résultante de la poutre fictive rectangulaire équivalente ;   

• 2bcN  est la partie reprise par le béton fictif sous la table de compression ; 

• La variation des contraintes de compression dans le béton est linéaire 

( )y Kyσ =  .  

Les contraintes fictives de compression du béton sont :   

( )( ) ( )

2
1

2
2 0 1 1

1 2                         s'appliquant en y 
2 3
1 2   s'appliquant en 
2 3

bc

bc

N Kby

N K b b y h y h

 =

 = − − −


 

 

 
fig.16 : Principe du calcul de la section d’acier pour une poutre en T `a l’ELS 
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Les équations d’équilibre s’écrivent : 

( ) ( )
1 2

1 1 2

0                                        selon 
2 2    selon  sur l'AN
3 3

bc bc s s

bc bc s s ser

N N A N

yN y h N d y A M M

σ

σ

− − =



− − + − =
  

 

De plus, comme pour le calcul d’une section rectangulaire, on admet que :  

( )
s s

s

bc

nK d y
Ky

σ σ
σ
σ

=
 = −
 =

  

 

Une section de béton armé est considérée comme non fragile si le moment 

fléchissant entrainant la fissuration de la section de béton conduit à une contrainte 

dans les aciers au plus égale à leur limite d’élasticité (condition de non fragilité). 

On évalue la sollicitation de fissuration en considérant la section de béton seul 

soumise à une contrainte normal variant de façon linéaire sur toute la section et 

en limitant les contraintes de traction ftj. 

En flexion simple, pour une poutre rectangulaire de dimension ( )b h× , la contrainte 

Maximale de traction est égale à : 

max 2 2
fiss

bt b tj
b

Mh h f
I

σ σ    = = − = −   
     

De l’expression du moment quadratique de la section de béton non armé non 

fissuré, on en d´déduit l’expression de Mfiss :

23

12 6
tj

b fiss

f bhbhI M= ⇒ =  

La condition de non fragilité suppose que lorsque la section de béton armé est 

soumise au moment fléchissant Mfiss, la contrainte dans les aciers est au plus égale 

à la limite élastique fe, et le moment M dans la section est égale à : s e bM A f Z=  . 

A partir des relations précédentes, la section minimale d’acier vérifiant la condition 

de non fragilité est donnée par la formule suivante : 

2

min
tj

s
e b

f bh
A

f Z
=
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Si, on suppose que 20,9 0,9bZ d h≈ ≈  la section minimale d’acier s’écrit comme suit : 

min 0, 23 tj
s

e

f
A bd

f
=

 

 

5. VERIFICATION DES SECTIONS EN T A L’ELS 

La vérification des sections en T à l’ELS est effectuée selon l’organigramme suivant :  

Données : géométrie de la section de béton, 
la section d’acier As  et le moment à l’ELS Mser. 

 

On calcule la position de l’axe neutre y, solution de l’équation 

( ) ( )20 1
0 1

b 15 0
2 2 s

hy b b h y A d y + − − − − = 
 

 

 
 

On calcule le moment d’inertie 

( ) ( ) ( )
23

23 1 1
0 0 0 1

1 15
3 12 2 s

h hI b y b b b b h y A d y = + − + − − + − 
 

 

 

On calcule les contraintes : 

( )
   

15
bc

s

Ky
K d y

σ
σ

=

= −  Avec :    serMK
I

=  

 

On doit vérifier que : 

0,6bc bc cjfσ σ≤ =  

s sσ σ≤  
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