Chapitre V : Flexion simple

Flexion simple v

1. DEFINITION - GENERALITES
Un élément est soumis a la flexion simple si les sollicitations se réduisent a un

moment fléchissant M_ et un effort tranchant V| . Si l’effort normal N_ =0, alors on

parle de flexion composée.
En béton armé on distingue l'action du moment fléchissant qui conduit au
dimensionnement des aciers longitudinaux de l'action de leffort tranchant qui
concerne le dimensionnement des aciers transversaux (cadres, épingles ou étriers).
Ces deux calculs sont menés séparément, et dans ce chapitre on se limitera aux
calculs relatifs au moment fléchissant.
Une poutre soumise a la flexion simple s’incurve ; la partie inférieure de la poutre
s’allonge et sa partie supérieure se raccourcit. La partie inférieure est donc soumise
a une traction et la partie supérieure est soumise a une compression.
En pratique, plus précisément dans le cas des batiments courants, on peut citer
quelques éléments de la structure qui travaillent en flexion simple comme :

- Les planchers (poutres, poutrelles, dalles pleines) ;

- Les balcons en console ;

- Les escaliers.

Contraintes de
compression

LI,

Contraintes
de traction

Poutre soumise a la flexion simple
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Chapitre V : Flexion simple

2.1. Prédimensionnement de la section de la poutre

Au stade du prédimensionnement, on peut choisir les dimensions de la section de
la poutre [largeur (b) x hauteur (h)] comme suit :

) ) Avec | : longueur de la poutre
— < h< —
Hauteur h 15~ h< 10 mesurée entre appuis
h h Avec b 215 cm Pour des
< php< =
Largeur b 5 b< 2 raisons de bétonnage correct
i [ | 2 |
’ ) ' h
= ! - l‘#"

2. CALCUL DES SECTIONS RECTANGULAIRES A L’ELU EN FLEXION SIMPLE

On s’intéresse dans ce qui suit au calcul des poutres a sections rectangulaires,

sans acier comprimé sollicitées en flexion simple a 'ELU, plus précisément a

’ELUR (état limite ultime de résistance des matériaux).

2.1. Hypothéses de calcul

Les sections droites planes restent planes aprés déformations ;
Il n'y a pas de glissement entre 1’acier et le béton ;

La résistance a la traction du béton est négligée ;

La contrainte ultime de l'acier est o, = f,, = A et la résistance ultime du béton
0,85f.
est o,. = f,, :—fc"
0y,

Le module d’élasticité de ’'acier est : Es = 200000 MPa ;
La section des aciers est concentrée en son centre de graviteé ;

La section des aciers n’est pas déduite de celle du béton.
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Chapitre V : Flexion simple

2.2. Notations

Pour les calculs aux ELU, on utilise les notations suivantes :
e bet hsont la largeur et la hauteur de la section de béton ;

e Asestla section d’acier, dont le centre de gravité est positionné a d de la fibre

la plus comprimée de la section de béton ;

e y est la position de l'axe neutre par rapport a la fibre la plus comprimée de

la section de béton ;

e o, estlavaleur de la contrainte ultime de calcul des aciers, limitée a f,, ;
e o, estlarésistance ultime de calcul du béton, limité a f,, ;
e ¢, représente la déformation du béton ;

e ¢ représente la déformation des aciers ;

y y y y
Ebc 2 fbu
e A M. 3510°
e [ e——
424'4‘, qu'_' ) _i ~ > GQO.
< ) AN_, : -
< ¥4 | ~ X | g | (o}
D
~
As ' | Q SS : GS
o % @ 10107/ |
| b |

I 1
2.3. Déformations limites ultimes des matériaux acier-béton
L’état limite ultime peut étre atteint soit :

e Par écrasement du béton en considérant une déformation du béton
&, =3,5%o (fig.1).
e Par écoulement plastique des aciers en considérant une déformation de
l’acier ¢, =10%eo0 (fig.2).
O-bc
0857, 4

=g 1

» E
2%o0 3,5%o0 be

fig.1 : Diagramme de calcul du béton a UELU
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Chapitre V : Flexion simple

>

10%o

fig.2 : Diagramme de calcul de Uacier a UELU

2.3.1. Droites de déformation - Pivots

Pour les calculs a ’ELU, on suppose qu'un point de la droite de déformation dans

la section est fixé. Ce point s’appelle le pivot (fig.3), et il correspond soit :

e A la déformation limite (maximale) de traction dans les aciers ¢, =10%o, C’est

le Pivot A ;
e A la déformation limite (maximale) en compression du béton ¢, =3,5%o, c’est
le Pivot B ;

e A une déformation en compression uniquement du béton(Z%o <g, < 3,5%0) ,

c’est le Pivot C.

Remarque :

Pour un calcul en flexion simple, on aura une section qui sera en pivot A ou en
pivot B.
Le bon fonctionnement de la section de béton armé se situe aux alentours de la

droite AB, car les deux matériaux acier et béton travaillent au mieux.
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Chapitre V : Flexion simple

Section de béton armé < Allongements > Ii Raccourcissements
(traction) 5 %n 35 %u(cumpressmn}
Y A' .
| B
S~
2 o~
£ 2
b
S .
3 C
. 3 2 <
1 E
. = I
\\ E okt
e,
® i O 3
Allongements 3
10 %o
R —_— P - = A /L
Section avant déformation 2 %o

fig.3 : Définition des différentes droites de déformation en flexion simple a UELU.
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Chapitre V : Flexion simple

Pivot A - domaine (1)

Déformations Modes de sollicitations et type d’éléments concernés
£, = 10 %0 Traction simple (tirant)
< < % Section entierement tendue en flexion composée (tirant)
0= Epe = 3’ S Yoo Section partiellement comprimée en flexion simple ou composée (poutre ou tirant)

L’ELUR est atteint par les armatures.
Section de béton armé Allongements > < Raccourcissements

(traction) 35 %u(cnmprcssmn}v
A o
B &
o
0 -
E
&
8
~ = ~

Allongements

10 %o )r_

Section avant déformation T
fig.3 (a) : Pivot A
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Pivot B — domaine (2)

Déformations Modes de sollicitations et type d’éléments concernés
_ o L’ELUR est atteint par le béton en flexion est la section est
gbc - 3’ 5 /00 . .. . . .
partiellement comprimé en flexion simple ou en flexion
g, <10 %o )
composée.
Section de béton armé Allongements I < Raccourcissements
traction compression
(traction) | 3.5 g, compression)
A' ()
B
"u =
7 20
ements
10 %o Allong
Section avant déformation
fig.3 (b) : Pivot B
7
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Chapitre V : Flexion simple

Pivot C — domaine (3)
La déformation du béton est telle que : enc < 2 %o sur la fibre la moins comprimée et 2 %o < enc < 3,5 %o sur la fibre la

plus comprimée (fig.3c).
L'ELUR est atteint par compression du béton et la section est entierement comprimée.

C’est le cas de la compression simple ou de la flexion composée avec section entiérement comprimeée.

Section de béton armé | Raccourcissements
2 %o l 3.5 %a(campressinn)
/ -
7 B B 4
=
o~
IJ C
o ﬁ_ o
s -
2 <0~
8
(=9
E
S
7 o T T - A
Section avant déformation 2 %o

fig.3 (c) : Pivot C
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Chapitre V : Flexion simple

2.4. Etude des cas limites
On se propose dans ce qui suit de déterminer la position de 'axe neutre (y) en

fonction des différentes déformations limites ultimes de 'acier et du béton.

2.4.1. Etat limite ultime aux pivots A et B
On considére dans ce cas que le béton atteint sa déformation ultime de 3,5 %o et
que l’acier atteint sa déformation ultime de 10 %o et on s’intéresse a la position de

l’'axe neutre (y) donnée a partir de la fibre la plus comprimée du béton (fig.4).

g 3:5%
‘ ., t B
4 . a4 . a -
<« ., AN |
[
= = I
, oy
10%e
|
As _ ~q Agl__Es 1
1 % @. .@ y A — /
b

fig.4 : Etat limites aux pivots A et B

En considérant les triangles semblables du diagramme des déformations on
obtient :

Epe _ &+ & Epe

< =>y= d
y d Y g t&,
35
Y 3,5+10

Soity =0,259d en posant |a =0,259 | onaura|] y=ad

On en déduit donc la position de ’'axe neutre y = 0,259 d (soit o = 0,259).
Les déformations de l’acier et du béton sont a leurs limites ultimes (pivots A ou B).

Dans ce cas, le travail des matériaux acier-béton est optimisé.
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Chapitre V : Flexion simple

2.4.2. Etat limite ultime au pivot B avec une déformation &s; a la limite
élastique ( €s= €1)

On considére dans ce cas que le béton atteint sa déformation ultime de 3,5 %o et

que l’acier travaille a sa limite élastique ¢,. Le diagramme contrainte déformation

de l'acier (fig.2) montre que la déformation élastique limite &, est atteinte pour une

Je

contrainte o, = f,, =%

N

On peut écrire : o, = E ¢, avec E = 200000 MPa (module d’*¢lasticité de I’acier).

Nuance d’acier FeE400 FeES00
17
8:&: Vs & =1,74%0 6‘l=2,17%0
' E E

La position de 'axe neutre (fig.5) est donnée par :

y= Ld =0.668d
3,5+1,74
Avec|qa, = 0,668 | (pour des aciers de nuance FeE400)
et y:3’—5d:0.617d
3,5+2,17

Avec|a, = 0,617 | (pour des aciers de nuance FeE500)

& .
I be — B
‘ e, | 3.510°
T al ™
<. AN, .
-~ S !
! <
I
AS [\ [ [ [ r — 8’
@ @ © /
b
fig.5 : Diagramme des déformations au pivot B avec &, = &,
10
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Chapitre V : Flexion simple

La connaissance de la valeur de a pour une déformation ¢, est trés importante car

au-dela de cette valeur (o >0,617 ou a >0,668) 'acier n’atteint méme pas sa limite

élastique, travaille insuffisamment tout en ayant une grande section.

2.4.3. Etat limite ultime au pivot A avec une déformation du béton de 2 %o
Une autre valeur de o est aussi importante, celle correspondant a une déformation

de l’acier de 10 %o et une déformation du béton de 2 %o (fig.6).

—_e 2%
! .
b 'y . I
e B Z I ™ -~
« . AN
[ |
- = !
™
=
y 10%e |
¥ A & Eg 1
| |e @ o A
b -—

fig.6 : Diagramme des déformations au pivot A avec &,, = 2%o

Un calcul similaire au précédent nous donne :

2

d=0,167d soit a =0,167
2+10

y:

Une valeur a en dessous de 0,167 (o < 0,167) le béton travaille mal et la section
de béton est considérée comme surdimensionnée.

2.4.4. Conclusion

La valeur de « wune fois calculée, comparée aux valeurs limites établies
précédemment, nous renseigne sur les modes de déformations de ’acier et du béton
et nous permet ainsi d’optimiser leurs sections. Les résultats obtenus en fonction

de a et u sont résumés comme suit (fig.7) :

. = . 1
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Chapitre V : Flexion simple

Pivot A. la section de béton
est surdimensionnée, I'acier

est optimise

Grande section de béton et peu d’armatures 0.167 ] 0.125 \

Pivot A. l'acier est trop
sollicité, le béton est moins

bien sollicite

Le domaine le plus
Pivots A et B. Acier et béton optimisés 0.2597 0.186 , )
> économique pour le
calcul de l'acier et
Pivot B. L’acier et le béton du béton
sont bien utilisés

Petite section de béton et beaucoup d’armatures 0 L

1 J

Pivot B. le béton est trop
sollicité, I'acier est trées mal
exploité des armatures

comprimeées sont nécessaires.

1 T 048

v

fig.7 : Valeurs de a et mode d’état limite

Nuance acier FeE400 FeES00
a / 0,668 0,617
,ul 0,392 0,372

. = . 12
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Chapitre V : Flexion simple

2.5. Calcul des sections rectangulaires a ’ELU (méthode simplifiée)
Soit une section rectangulaire de largeur b et de hauteur h, sollicitée par un

moment de flexion M, (fig.8).

< — > ~
Béton comprimé S iy
3 o
o
E e ~JSbu
— A - ~ - -~~~ 7 _:.:. ________
. = : — ——
i N — Ny,
1 : ; - - - -— —_— = &
J' 0y : q—n
' SN ~ Cla
Mu o 3
[] A
.‘ ! ,r r\<> .
G [
"o fe A ’ f N
. ’ 5 su 5
] 5 —— S —P
SINRY B v oo
Acier Diagramme des Diagramme des Sollicitations
tendu b déformations contraintes internes

fig.8 : Déformations, contraintes et sollicitations internes

fou : contrainte ultime en compression du béton (fou = 0,85 fe /Oy ;

Os = fsu : contrainte ultime des aciers en traction (0s =fsu=fe/Vs) ;
Npe : résultante des contraintes du béton comprimé ;

Ns : résultante des contraintes des aciers tendus ;

Z : bras de levier.
Les résultantes des contraintes au niveau des aciers (Ns) et du béton comprimé
(Nne) sont données par les figures 8 et 9 :

Ns = As 0s = As fe/ys

Nbc=0,8y b fu=0,8 a d b fru

fig.9 : Répartition des contraintes

. . 13
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Chapitre V : Flexion simple

Le bras de levier Z est donné par Z=d-0,4y=d-0,4ad
Soit Z=(1-0,4a)d
En écrivant les équations d’équilibre des moments on obtient :
NocZ=Muy  .eennnn. (1)
NsZ=Mu .cenn.n. (2)
L’équation (1) nous donne :
0,8 dbfhu(l1-0,4 a)d=Muy
0,8 a (1-0,4 o) =My /b d2fu
Onaura0,8 ¢ (1-0,4 a)=pn avec| 1 = My /b d?fpru  (Moment réduit)

-0,32 @2+0,8a =np
0,32 2-0,8 a +p=0
Soit 0,4 a?2- a + (/0,8 =0

Equation du second degré d’inconnue « .
A=1-4(0,4) /0,8
A=1-2n

Dol a=(1-J1-24)/08
a=125(1-1=24) | ot | 11=0,82(1-0,4a)

Une fois a calculée, en utilisant la figure 5 on peut déterminer dans quel mode

d’état limite travaille notre section et optimiser ainsi les sections de ’acier et du

béton. D’autre part, l‘¢quation (2) devient :

Ao (1-0,4a)d =M, =4, = M,
Zo,

Pour a = 0,259 soit u = 0,186 l'acier et le béton sont a leurs limites ultimes (pivots

B ou A), on considére donc que pour toute valeur de o > 0,259 soit u > 0,186,
l’acier et le béton sont bien utilisés mais cette valeur ne doit pas dépasser celle de
o limite qui correspond a oL =0,668 soit uyr = 0,392 pour les FeE400 ou
oL =0,617 soit mL = 0,372 pour les FeES00 (voir fig.7), car dans ce cas le béton
est trop sollicité et l'acier est sous exploité ce qui entraine une grande quantité
d’aciers tendus pour une quantité relativement réduite d’aciers comprimeés.

On préfére donc, dans la suite de ce cours, de redimensionner la section de béton
en augmentant par exemple sa hauteur, au lieu de faire un dimensionnement avec

aciers comprimes.

. = . 14
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Chapitre V : Flexion simple

Tableau 1 : Valeurs caractéristiques de o et u

a 0,167 0,259 0,617 0,668 1

0,372 0,392
H 0,125 0,186 Aciers FeE500 Aciers FeE400 0,48

2.6. Organigrammes pour le calcul des poutres a section rectangulaire en
flexion simple a ’ELU

2.6.1. Vérification des dimensions et calcul de la section d’acier
On se propose de vérifier les dimensions et de calculer les aciers d'une section

rectangulaire en flexion simple a ’ELU.

Données : b ; h ; d (géométrie de la section de béton) ,
Sfire 51, 5 v, 3 v, (Caractéristiques des matériaux et My, le moment ultime)

0.85 f M Dans le cas courant d = 0,9h
Sou = 2 7S c28 et  u= 2—“ 7, =1,5 dans le cas courant et
oy b bd f”” 7, = 1,15 dans le cas accidentel

a:1,25(1—\/1—2u)

Pour optimiser lutilisation des aciers on doit avoir a<a; (a; = 0,668 soit uyr = 0,392
pour les FeE400 et a; = 0,617 soit ur = 0,372 pour les FeE500).

Dans le cas contraire redimensionner la section en augmentant sa hauteur.

a 0,167 10,259 Lo 1
u 70,125 10,186 " . '0,48
Pivot A Pivot B Pivot B

Le béton est trop

o : g, ; L’acier et le béton sont
L’acier est bien sollicité mais le . iy sollicité et Vacier est
béton est moins bien sollicité len sollicites " .

sous exploité (aciers

comprimés nécessaires)

&——— Lledomaine le plus économique —>

Z=(1-0,4a)d A =—2+

O =

N

0,23bdf.
et Asd o2
/e

y, = 1,15 dans le cas courant, y, = 1 dans le cas accidentel

Je
Y

. = . 15
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2.6.2. Moment résistant d’une poutre en flexion simple a I’ELU
Connaissant la géomeétrie de la poutre et la section d’acier (As), on calcule le

moment résistant de cette section.

0,85/ 5 Ao,

o—F—————<u
S Oy, 0,8bdf,

M, =ZA0,| |Z=(1-0,4a)d

Le moment résistant M, doit étre supérieur au moment ultime (M, >M,). Dans

le cas contraire un redimensionnement est nécessaire.

3. VERIFICATION DES SECTIONS RECTANGULAIRES A L’ELS EN FLEXION
SIMPLE

On s’intéresse dans ce qui suit a la vérification des poutres a sections
rectangulaires, sollicitées en flexion simple a 'ELS, plus précisément a I’état limite
de service vis-a-vis de la durabilité.
3.1. Hypothéses de calcul et Notation

e Les sections droites planes restent planes aprés déformations ;

e On considére qu’il n’y a pas de glissement entre l’acier et le béton ;

e La résistance a la traction du béton est négligée ;

e Le béton et l'acier sont considérés comme des matériaux linéairement

élastiques : c'est-a-dire que les contraintes sont proportionnelles aux

déformations :
Gbc = ﬁ)c = Ebgbc
O-S = f;‘ = ES(C;S

O,. = f,.: contrainte de service du béton ;
o, = f.: contrainte de service de l’acier ;

E, : module de déformation instantanée du béton ( E; =110007,") ;

E  : module de déformation instantanée de l'acier (£, = 200000 MPa) ;

g, , &, : déformations unitaires €lastiques de l'acier et du béton ;

e Par convention on prend n= F‘ =15 (une section d’acier A est représentée par
b

une section de béton égale a n.A)

. . 16
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Chapitre V : Flexion simple

Fig.10 : Notations utilisées pour les calculs en flexion simple a ’ELS

3.2. Etat limite de service vis-a-vis de la durabilité

On se propose de déterminer les contraintes en service et faire une vérification vis

a vis de la limite de compression du béton et de la limite d’ouverture des fissures.

Le dimensionnement a I’ELU et la vérification des contraintes a I’ELS peut

étre établie lorsque la fissuration est peu préjudiciable ou préjudiciable dans

le cas d’une fissuration trés préjudiciable il faut faire le calcul a ’ELS.

3.2.1. Calcul des contraintes

Connaissant les caractéristiques géomeétriques de la section de béton (b, h, d), la

section des aciers tendus As et le moment de flexion a 1’état limite de service Msger

(fig.11), on calcule les contraintes de ’acier et du béton.

[ ] ‘ | |

a. - - ° ] =)

. .. a4 Lo
« . AN, r
- ~3
As r
| © @ e
b

fig.11 : Caractéristiques géométriques de la section

y : Distance du centre de gravité de la section homogéne a la fibre la plus

comprimée
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Chapitre V : Flexion simple

e Position de ’axe neutre (y)

On calcule le moment statique par rapport a ’'axe neutre (le béton tendu est

neégligé) :
Y

: position du centre de gravité du béton comprimeé

bxy : section du béton comprimeé

n : coefficient d’équivalence (n=15)

by(%j—nAs (d—y)=0 soit| by>+304,y-304d=0 | (3)

y, est la solution de I’équation du second degré (3).

e Le moment d’inertie I

Le moment d’inertie (I) calculé par rapport a 'axe neutre est donné par :

3 2
I = %+by(%) +15As(a’—y)2 :>]=%by3+15AS(d—y)2

Pour une répartition linéaire des contraintes (fig.12) on aura :

M M M
ab6=( Is”jy et (;S—( ;”j(d—y) onpose K = Ise’

on obtient| o, =Ky | et| o =nK(d—y)

Obe
- ) < )
. a y IR M ser
4 a4 . . ™ “ :: ~
< J__a 'N'.¢- _ - > _’_ —_—
/ i o
l A / // |
I )/ o
py ~
| / |
@ n 2 ' L??I/ — L Oy |
: ? o
— b — | Y
fig.12 : Répartition des contraintes
18
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3.2.2. Vérification des contraintes

Les contraintes de service doivent rester inférieures aux limites suivantes en
fonction du type de fissuration :

0, <0, =0,61,

C
O, <0,
e Fissuration peu préjudiciable : aucune limite pour &, ;

e Fissuration préjudiciable : &, = max (% ; 1104/n f’f] pour les HA ;

e Fissuration trés préjudiciable : &, =0,8max (% ; 11047 fljjpour les HA ;

n coefficient de fissuration tel que : n = 1,6 pour les barres a haute adhérence sauf
pour les aciers de diamétre inférieur a 6 mm ou on prend n = 1,3.
fij résistance a la traction du béton a j jours : f; = 0,6 + 0,06 f;.

3.2.3. Organigrammes pour la vérification des poutres a section rectangulaire
en flexion simple a I’ELS

On se propose de vérifier les sections d’acier et du béton a 'ELS dune section
rectangulaire sollicitée en flexion simple.

Données : b ; h ; d (géométrie de la section de béton),
La section d’acier As et le moment a UELS Mser.

On calcule la position de l’axe neutre y, On calcule le moment d’inertie

solution de l’équation | 2

On calcule les contraintes :

O-bc:Ky
o,=nK(d-y)

On doit vérifier que :
Gbc < O-bc = O’ 6](;7

O,<0,

. . 19
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3.2.4. Dimensionnement a I’ELS
Lorsque la fissuration est trés préjudiciable et dans certains cas préjudiciable la
combinaison dimensionnante en flexion simple est celle de 'ELS. On proceéde

directement au calcul a ’'ELS car dans ce cas la section d’acier nécessaire a I’ELS

est toujours plus grande que celle nécessaire a I’'ELU.

Section B.A. Béton comprimé
— TEE T AP
T ] - = =t
Moment || 1% 1N _ . c———te = 7 o |
issant |%0)) e
agis R - B |
N .
..:I-:FI-
S ey A > C| N,
— == = = — = =
ol s ;s A »> -H

Hinl A I S
;'-. Acier 1 | b | n
tendu Diagramme Diagramme Eiforis normaux

des déformations des contraintes et momenls intemes

Equations d’équilibre

Somme des forces Somme des moments

ZM/A :>Mser = ASGS (d _g)

%byabc—A o,=0 YM/, =M, :ébyzabanAsas(d—y)

S

1 y
ZM/C :>Mser = Ebyabc (d _E)

Equations de compatibilité des déformations

e __ &

y d-y

O-bc O-s ndo—bc

y n(d—y) n+o, +o,

En prenant : O, =0, , 0, =0, ¢t y=ad

. . 20
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1 . . . .
Le moment M, :EbyEbc (d —%) est le moment au-dela duquel la section nécessite

. o ndo,,
des aciers comprimés pour y, =——*—
n+o, +o,

En combinant les équations d’équilibre et les équations de compatibilité avec

(y=ad ) on obtient :

=0 On pose ==
bd” POSE o = b’

oo -3c.a’ —(6nM“’
’ ’ bd’

j 6nM nM
a+

On aura: o« -3a’ -6y, (a-1)=0

La solutiona (O <a< 1) de cette équation nous permet de calculer la section d’acier

M . .
A =—>*— (équation des moments en A)

@1(1—“)
3

Une fois la section calculée, la vérification des contraintes se fait suivant

l'organigramme de vérification des contraintes a I’ELS (3.2.3).

3.2.5. Organigrammes pour le dimensionnement des poutres a section
rectangulaire en flexion simple a I’ELS

Dimensionnement d'une section rectangulaire a I’ELS sollicitée en flexion simple.

Données : Mser 5 b > h » .fe > .fC28

1 do
On calcule M, =—byc,, (d —&] avec y, = n_O',,c —
2 3 n+o, +0,

Si J Mser > M]
Redimensionner la section de béton (augmenter b et/ou h) ou placer des aciers
comprimés (mauvais choix)

Si : Mser < M; les aciers comprimés ne sont pas nécessaires.

nMser
bd’G,

On détermine o (0 <a< 1) solution de l’équation : a’ —3a’ —6u,, (a —l) =0

On calcule : u, =

M

ser

ESd(l—aj
3

La vérification des contraintes est donnée par (3.2.3)

La section d’acier est donnée par : A, =

. = . 21
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luser

bd’G,

Dimensionnement des sections d’aciers a I'ELS (Flexion simple)
On calcule pser on lit la valeur de a correspondante puis on calcule
M
— ser
A "
wa1-)
3
0.35
L] /
/
0.30 /
/,
0.25
/’
| /
0.20 | /
/
Z
//
0.15 d
/|
///
0.10 e
] i
- /(
0.05 M
g
/”
et
—1"]
0.00 =
0.00 0.10 0.20 0.30 0.40 0.50 0.60
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4. PRINCIPE ET FONCTIONNEMENT DES SECTIONS EN T

Les dalles supportées par des poutres contribuent souvent au travail de celles-ci
en reprenant une partie des contraintes de compressions générées par la flexion de
cette poutre (fig.13).

Dans ce cas, Il est important de considérer la section sollicitée comme une section
en T et non pas comme une section rectangulaire.

Notons que ceci n’est vrai que dans le cas ou la poutre est soumise a un moment
positif ; si le moment est négatif, la dalle ne participe pas au travail de la poutre et
la section sollicitée est considérée comme rectangulaire.

Par simplification, on considére une répartition uniforme des contraintes sur la

largeur de la table a utiliser. Cette largeur est appelée largeur efficace (fig.14) .

\imax [kN/m]

TEE6.47
702,88
639.29
575.70
51211
448 .52
384.93
32134
25775
19416
13057
56.99
340
-60.19
12378

-187.37
-250.96

fig.13 : Efforts normaux selon (x) dans la dalle.

. . 23
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'\(.\\I"\\.
7 e,
“n <
S L ~
T /4 @ ~
< \
£ /l//
g 1 ‘ |
o
<
< 3
:‘:1: ~
< ly
S
&
p— b [r—
Y |
i i 5 . ! ' ' ‘ ':-‘a. _---d'. ._'4_: ‘d,".’ "- . .‘  : : - d:f i
< AN. !
Y Table de compression
S

Nervure

A~

O

\

O
I

by

Y

—
=]

fig.14 : Dimensions des débords a prendre en compte pour le calcul d’une poutre en T.

. = . 24
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4.1. Calcul des sections en T

Pour calculer les sections en T, il est nécessaire de savoir si I’axe neutre est dans
la table de compression ou dans la nervure car le calcul s’effectue difféeremment
selon chaque cas.

e 1ler cas : L’axe neutre est dans la table de compression.
On a donc ( y<h1), le béton tendu étant néglige, la poutre en T se calcule
exactement comme une poutre rectangulaire de largeur b, a ’'ELU ou a ’ELS.
e 2¢&me cas : [’axe neutre est sous la table de compression.

On a donc ( y> }11) , une partie de la contrainte normale est reprise par la table

de compression de largeur b , l'autre par une partie de ’ame (nervure) de

largeur b, et de hauteur (0,8y—#) a 'ELU et (y,—%) a I’'ELS.

En effet, dans la majeure partie des cas, une poutre en T se calcule comme une
poutre rectangulaire de largeur b et si (y<h) n’est pas vérifiée, il faut refaire le
calcul avec les hypothéses dune poutre en T.

Pour cela on calculera le moment résistant de la table (a 'ELU et a I'ELS) défini
comme le moment que peut reprendre la table si elle est entiérement comprimée
(l'axe neutre est situé au raccord entre la nervure et la table de compression).

Les moments résistants M, alELU et a 'ELS sont donnés comme suit :

M, =bhf, (d —%j A 'ELU

tser

M, -bhs (d—ﬁj A IELS
L 2 3

4.1.1. Calcul des sections en T a I’ELU

A TELU le moment résistant de la table de compression est : M, =bh f,, (a’ —%)

Soit M, le moment a I’'ELU, on distingue alors deux cas :

e M, <M, :l'axe neutre est dans la table de compression, la section se calcule

comme une section rectangulaire de largeur b et de hauteur utile d sollicitée

par le moment ultime M.

. = . 25
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e M, >M,:Taxe neutre est dans la nervure, la section se calcule comme une

section en T.
Dans ce cas on considére que les débords de la table de compression reprennent

etlereste M, =M, -M,,. estrepris

une partie du moment a ’ELU noté M, ,,

par I’ame.

On se raméne donc au calcul de deux sections rectangulaires, 1'une de largeur

(b—b,) et l'autre de largeurs, (fig.15).
| (b-by /2 |

A ame

As Atable
[N N L XN ]

_ 2 ee — | eee |
-

fig.15 : Principe du calcul de la section d’acier pour une poutre en T a ’ELU

Les étapes du calcul sont les suivantes :

1) Calcul de la part de moment repris par les débords de la table :

M ruie = (b_bo)hlfbu d_%

2) Calcul de la part de moment que doit reprendre ’ame :

M :Mu _MuTable

3) Calcul classique de la section d’acier (

uAme

A, )& prévoir pour reprendreM,,

sAme

(calcul du moment réduit u, de a, Z et o, puis (4,,,) en évitant de mettre

des aciers comprimés) :

A — Mu_MuTable
e (1-0,4a) do,

26
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4) Calcul de la section d’acier nécessaire (4,,,,)pour reprendre le moment
M ... de la table :

M

_ uTable
AsTable -
hl

o|d——
2

N

5) Calcul de 1la section d’acier nécessaire a mettre

A=A, +4

Ame sTable

en place:

4.1.2. Calcul des sections en T a I’ELS

Les calculs a 'ELU sont conduits en décomposant la résultante des contraintes de
compression du béton en deux résultantes fictives N, et N, , (fig.16).
e N,, estlarésultante de la poutre fictive rectangulaire équivalente ;
N,,, est la partie reprise par le béton fictif sous la table de compression ;
La variation des contraintes de compression dans le béton est linéaire

O'(y):Ky .

Les contraintes fictives de compression du béton sont :

( 1 : 2
N,., = EKby2 s'appliquant en 3 y

1 ) 2
N,., =5K(b—b0)(y—/11)2 s'appliquant en g(y—hl)

"

ees — © @ @] I
LT LT
‘Nbc - Nier - Nbcz‘

fig.16 : Principe du calcul de la section d’acier pour une poutre en T ‘a ’ELS

. = . 27
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Chapitre V : Flexion simple

Les équations d’équilibre s’écrivent :
N,,—N,,—A4oc,=0 selon N
2 2

gbed —g(y—hl)Nbcz +(d-y)d4,0,=M_, selon M sur 'AN

De plus, comme pour le calcul d’une section rectangulaire, on admet que :

-

O, =0,
1o, =nK(d-y)
\Gbc:Ky

Une section de béton armé est considérée comme non fragile si le moment
fléechissant entrainant la fissuration de la section de béton conduit a une contrainte
dans les aciers au plus égale a leur limite d’élasticité (condition de non fragilite).
On évalue la sollicitation de fissuration en considérant la section de béton seul
soumise a une contrainte normal variant de facon linéaire sur toute la section et

en limitant les contraintes de traction fy.

En flexion simple, pour une poutre rectangulaire de dimension (bx h) , la contrainte

Maximale de traction est égale a :

De l'expression du moment quadratique de la section de béton non armé non

bR’ - f,jbh2

- = .
1 2 fiss 6

La condition de non fragilité suppose que lorsque la section de béton armé est

fissuré, on en d'déduit 'expression de Mjss 1y

soumise au moment fléchissant Msss, la contrainte dans les aciers est au plus égale

a la limite élastique fe, et le moment M dans la section est égale a :M =4 f.Z, .

A partir des relations précédentes, la section minimale d’acier vérifiant la condition

de non fragilité est donnée par la formule suivante :

2
P
Smin f-eZb

. . 28
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Si, on suppose que Z, 0,94 ~0,9°/ la section minimale d’acier s’écrit comme suit :
Jy

e

A

smin

=0,23bd

5. VERIFICATION DES SECTIONS EN T A L’ELS

La vérification des sections en T a ’ELS est effectuée selon 'organigramme suivant :

Données : géométrie de la section de béton,
la section d’acier As et le moment a UELS Meer.

On calcule la position de l'axe neutre y, solution de l’équation

b, »
oy +(b—b0)hl(y—%j—1514s(d—y)=0

On calcule le moment d’inertie

1, s hY 2
]ZE Oy +(b_b0)E+(b_b0)hl y—z +15A5(d—y)

On calcule les contraintes :

Gbc = Ky
o, =15K(d-y) Avee: I

On doit vérifier que :
O-bc < O-bc = O’ 6](;]

O,<0,

. . 29
www.cours-genie-civil.com



